iRAP - an integrated RNA-seq Analysis Pipeline

نویسندگان

  • Nuno A. Fonseca
  • Robert Petryszak
  • John C. Marioni
  • Alvis Brazma
چکیده

RNA-sequencing (RNA-Seq) has become the technology of choice for whole-transcriptome profiling. However, processing the millions of sequence reads generated requires considerable bioinformatics skills and computational resources. At each step of the processing pipeline many tools are available, each with specific advantages and disadvantages. While using a specific combination of tools might be desirable, integrating the different tools can be time consuming, often due to specificities in the formats of input/output files required by the different programs. Here we present iRAP, an integrated RNA-seq analysis pipeline that allows the user to select and apply their preferred combination of existing tools for mapping reads, quantifying expression, testing for differential expression. iRAP also includes multiple tools for gene set enrichment analysis and generates web browsable reports of the results obtained in the different stages of the pipeline. Depending upon the application, iRAP can be used to quantify expression at the gene, exon or transcript level. iRAP is aimed at a broad group of users with basic bioinformatics training and requires little experience with the command line. Despite this, it also provides more advanced users with the ability to customise the options used by their chosen tools. iRAP is available under General Public License 3 (GPLv3) and although it should be portable to any POSIX-compliant operating system, several third party programs only run on Linux. iRAP can be obtained from http://code.google.com/p/irap.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TRAPR: R Package for Statistical Analysis and Visualization of RNA-Seq Data

High-throughput transcriptome sequencing, also known as RNA sequencing (RNA-Seq), is a standard technology for measuring gene expression with unprecedented accuracy. Numerous bioconductor packages have been developed for the statistical analysis of RNA-Seq data. However, these tools focus on specific aspects of the data analysis pipeline, and are difficult to appropriately integrate with one an...

متن کامل

Grape RNA-Seq analysis pipeline environment

MOTIVATION The avalanche of data arriving since the development of NGS technologies have prompted the need for developing fast, accurate and easily automated bioinformatic tools capable of dealing with massive datasets. Among the most productive applications of NGS technologies is the sequencing of cellular RNA, known as RNA-Seq. Although RNA-Seq provides similar or superior dynamic range than ...

متن کامل

Unipro UGENE NGS pipelines and components for variant calling, RNA-seq and ChIP-seq data analyses

The advent of Next Generation Sequencing (NGS) technologies has opened new possibilities for researchers. However, the more biology becomes a data-intensive field, the more biologists have to learn how to process and analyze NGS data with complex computational tools. Even with the availability of common pipeline specifications, it is often a time-consuming and cumbersome task for a bench scient...

متن کامل

The RNASeq-er API—a gateway to systematically updated analysis of public RNA-seq data

Motivation The exponential growth of publicly available RNA-sequencing (RNA-Seq) data poses an increasing challenge to researchers wishing to discover, analyse and store such data, particularly those based in institutions with limited computational resources. EMBL-EBI is in an ideal position to address these challenges and to allow the scientific community easy access to not just raw, but also ...

متن کامل

SINCERA: A Pipeline for Single-Cell RNA-Seq Profiling Analysis

A major challenge in developmental biology is to understand the genetic and cellular processes/programs driving organ formation and differentiation of the diverse cell types that comprise the embryo. While recent studies using single cell transcriptome analysis illustrate the power to measure and understand cellular heterogeneity in complex biological systems, processing large amounts of RNA-se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014